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Abstract-This paper is concerned with the nonlinear stability of simply supported shallow spherical
shells with a center hole under the action of a uniformly distributed line moment along a circle
concentric with the shell boundary, A set of truncated monomials have been used in representing
various discontinuous distributions in order to simplify formulations. We have computed the load­
deflection curves, buckling loads, radial membrane forces and the critical geometrical parameter K,
for shells with various center-hole radii. Our numerical results show that (I) both the initial shell
stiffness and the buckling load are decreased due to the presence of a center hole with a free
boundary, If the hole edge is reinforced with a rigid ring, the truncation not only raises the initial
shell stiffness and the buckling load of the shell but also its critical geometrical parameter K" The
effects of the truncation increase upon increasing the radius of the center hole; (2) for shells with
large geometrical parameter K, the radial membrane forces at critical buckling become partly
tensional and the buckling load will be almost unaffected by the truncation if the center hole is
situated inside the tensile region.

NOMENCLATURE

E Young's modulus
D = Eh'jI2(l-v2

)

K = vi 12(1- v')(2jlh), geometrical parameter
Ke critical geometrical parameter
M line moment load per unit length
M, radial moment
N, radial membrane force
No circumferential membrane force
N, = 12(I-v')a' N,/ Eh', dimensionless radial membrane force
a base radius of shell
b radius of loaded circle
c radius of center hole
/ rise height of shell
h shell thickness~__cc-

m = 12(1-v')JI2(1-v') a' MjEh 4
, dimensionless line moment load

me buckling load
u horizontal meridional displacement
w vertical displacement
Y. = bla, dimensionless radius of loaded circle
f3 = cja. dimensionless radius of center hole

Poisson's ratio

INTRODUCTION

A shallow spherical shell with a center hole is one of the basic structural elements in
engineering, and thus it is important to clarify the buckling behavior of the truncated shell
under various loading and boundary conditions, in particular the effects of the hole on the
buckling behavior. The pioneer works of Budiansky (1959) and Tilman (1970) have given
the results of theoretical and experimental investigations ofclamped shallow spherical shells
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with a center hole under a uniform pressure. The papers of Liu (1965, 1977) and Liu et al.
(1988) concern the buckling behavior of truncated shallow spherical shells under the action
of ring loads or line moments along the hole edge. Recently, we have applied the B-spline
approximation to buckling problems of ring-loaded shallow spherical caps (Gu, 1988) and
truncated shells (Gu, 1991) and obtained reasonably accurate solutions within a wide range
of values of the geometrical parameter K. In this paper we shall discuss the symmetrical
large deflections and the buckling behavior of truncated shells that are subjected to a line
moment uniformly distributed on a circle concentric with the shell boundary. Apparently,
the treatment of such a problem will be more difficult than conventional nonlinear sym­
metrical buckling problems because we have to find a solution in which the moment
distribution is discontinuous, while the shear distribution of the shell remains continuous.
Therefore, the purpose of this paper is twofold: (1) to present a method of solving the
symmetrical buckling problems of a thin shell in which the moment load is discontinuously
distributed; (2) to investigate the buckling behavior of shallow spherical shells with a center
hole under the action of a line moment, in particular the effects of the hole on the buckling
behavior.

The steps in our analysis are as follows. At first we replace the line moment by a couple
of ring loads and let the difference between the radii of the two loaded circles approach
zero in subsequent numerical calculations. Then we use a set of truncated monomials
(x - x;)~ and (x - Xi - L1x)'~ to separate out the discontinuous components of the irregular
distributions so that we only need to manage sufficiently smooth distributions. Finally, we
use both successive iterative techniques and the B-spline approximation to solve the non­
linear boundary value problem.

We have computed load-hole edge deflection curves, buckling loads, radial membrane
forces and. the critical geometrical parameter Kc (geometrical parameter
K = ~ 12(1 - v2 )(2f/h) , where f represents the shell rise, h the shell thickness and v the
Poisson's ratio; Kc is the highest value of K below which buckling will never occur). All the
calculations were carried out for simply supported truncated spherical shells under the
action of line moment loads with various values of load radius rJ., hole radius f3 and
geometrical parameter K. The results obtained show the following. (I) The initial shell
stiffness and the buckling load are decreased due to the presence of the center hole. The
effects of truncation on the buckling load and initial shell stiffness increase upon increasing
the radius of the center hole. However, when the radius of the center hole is relatively small
in comparison with that of the loaded circle, the effect of the center hole on the buckling
load decreases rapidly as the geometrical parameter K increases and becomes negligible for
sufficiently large K. (2) If the hole edge is reinforced with a rigid ring, not only the initial
shell stiffness and the buckling load, but also the critical geometrical parameter Kc , will
increase.

In order to understand the foregoing results, we have calculated the radial membrane
force N r and the deflection Was functions ofthe radial coordinates. From these calculations
we note that it is crucial for buckling of a shell that the radial membrane force attains a
sufficiently large negative value (negative N r produces compression in the radial direction)
somewhere in the shell. For shells at the critical buckling state, the radial membrane forces
are negative everywhere when K is small and become partly positive in the central region
of the shell as K increases. Thus, if the center hole is situated inside the central tensile
region, the distribution of N, in the compressive region will be almost unaffected by the
truncation. This fact explains why the effect of truncation on the buckling load is negligible
for shells with large K and a relatively small center hole.

To test the accuracy of our numerical scheme, we have also investigated the limiting
case in which the load radius rJ. approaches I and the hole radius approaches zero. For
K < 22, the results obtained coincide with those obtained by other authors for spherical
caps subjected to a line moment along the outside edge of the cap (Yeh, 1980). For K < 28,
the results are in good agreement with those obtained by iterative techniques in sixth­
order approximation. For 32 < K < 400, we still obtain fairly good convergent results,
while the results obtained by iterative techniques fail to converge in numerical
calculations.
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Fig. 1. A truncated spherical shell segment: (al and (bl center hole with free boundary; (cl center
hole reinforced with a rigid ring.

FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

The stability problem for a shallow spherical shell subjected to a line moment load is
harder to cope with than conventional nonlinear stability problems because of the dis­
continuity of distribution of moment and the continuity of distribution of shear. Here we
replace the line moment by a pair of ring loads (Qo and Q~) which are equivalent to the
line moment (see Fig. 1). According to the equivalence principle of force, we have
Qo = M/!J.b and Q~ = bQo/(b+!J.b), where M represents the intensity of the line moment
and Qo and Q ~ the intensities of the inner and outer ring loads, respectively.

The equations of the finite symmetrical deflections of a shallow spherical shell with a
center hole subjected to a set of ring loads shown in Fig. 1(b) can be expressed in the form
[see e.g. Feodosiev (1949) or Hu (1954)]

d (I d ( dw)) (2f dW) 0 0Dr dr -; dr r dr = rNy a2 r+ dr +(r-b)+Qob-(r-b-!J.b)+Qob

(2)

where r represents the distance from the axis of symmetry, W the vertical displacement, N r

the radial membrane force, D = Eh 3 j12(\ _v2
) and (r-b)~, (r-b-!J.b)~ are truncated

monomials defined by

{
Xm

xm -
+ - 0

for X? 0
for X < 0'

'11 = 1,2, ... , (3a)

SAS 32-15-1

o {I for X>O
X+ = o for X < o. (3b)
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We see that Xn; is a function with continuous derivatives up to the (m-I)th order but its
mth-order derivative has a jump at X = 0.

Now noting that, for shallow thin spherical shells, the radial moment M" cir­
cumferential membrane force No and the horizontal meridional displacement u can be
written as (Hu, 1954)

(
d

2
W V dW)M,= -D -+--,

dr2 r dr

dN,
No = N,+r dr '

r [ dN,]u = Eh (l-v)N,+r& '

the boundary conditions for a truncated shell with a simply supported outside edge and
free hole edge are

W = 0, N, = 0, (
d

2
W V dW)-D -+-- =0

dr2 r dr
at r = a, (4a)

W,
dw
dr'

N,., M, and are continuous at r = b, (4b)

W,
dw
dr'

N,., M, and
dN,

dr
are continuous, at r = b+!1b (4c)

N, =0, (
d

2
W V dW)-D -+-- =0

dr2 r dr
at r = c. (4d)

After introducing dimensionless quantities defined by

r
P =-,

a

c
f3 =-,

a

!1b
!1et =­

a

and noting that m = P(!1et!et), we can rewrite eqns (l) and (2) as

dId 0 0
P-

d
- -d pcp = Scp-(p-et)+P+(p-et-!1et)+P,

P P P

and the boundary conditions (4a), (4b), (4c) and (4d) as

(5)

(6)
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(7c)

(7a)

(7b)

at p = O(+LlO(,

d(p V
W=O, S=O, -+-cp=-K-Kv, at p=l,

dp p

dcp
W, cP and are continuous, at p = 0(,

dp

dcp
and - are continuous,

dp
W, cP

dcp v
S=O, -+-cp=-K-Kv, at p=f3.

dp p
(7d)

If the hole edge is reinforced with a rigid ring, condition (7d) must be replaced by

dS
cp=-Kf3, Pdp-vS=O, at p=f3. (7d')

To circumvent the convergence difficulties encountered in solving the boundary value
problem (5)-(7) when the nonlinear terms in eqns (5) and (6) become dominant, we carried
out the incremental iterative techniques as follows.

Assuming that the solution of eqns (5)-(7) at a given load P = Pn is known and can
be written as cP = CPm S = Sn and W = Wm let the solution at P = Pn+LlPnbe expressed by
cP = CPn+Llcpm S = Sn+LlSm W = Wn+LlWn. Then, from eqns (5)-(7) we obtain

(8)

(9)

(lOa)

are continuous at p =a, (lOb)

are continuous at p = O(+Lla, (lOc)

d v
LlSn = 0, -d LlCPn + - Llcpn = 0 at p = 13·

p p
(lOd)

Thus, the solution at an arbitrary load P can be obtained by starting from the known
solution at P = 0 (i.e. cP = CPo = - kp, S = So = 0, W = Wo = 0) and solving the boundary
value problem (8)-(l0) successively: cP = - Kp +L nLlcpn, S = L nLlSn, W = L nLl Wn-

It is evident from eqn (8) and boundary conditions (lOb) and (lOc) that although Llcpn
and its derivative (d/dp)LlCPn are continuous functions of p, the second-order derivative
(d 2/d p2)(pLlCPn) will have a jump at p = 0( and p = a+LlO(. Therefore it is convenient to
introduce a new function LlCP: defined by
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* (p - et.)~ (p - et.-.1et.)~
.1cp" = .1cp" - 2' .1P" + 2' .1P",.p .p

(11 )

where (p-et.)~, (p-et.-.1et.)~ are truncated monomials defined in eqns (3a). Substituting
eqn (11) into eqns (8)-(10), we obtain

dId [(p-et.)~ (p-et.-.1et.)~ J
p -d - -d p.1S" = - cp" .1cp;- 2' .1P" + 2' .1P"p p p .p.p

1 [ (p a)2 (p a .1et.)2 J2- - .1 *- - +.1P + - - + .1P
2 cp" 2' " 2' " ,.p .p

(12)

(13)

d V (l-af
dp (.1cp;) + P.1cp,; = (1 -et.)' .1P" - (1- a - .1a)· .1P" - (1- v) 2 .1P"

(1-et.-.1et.)2
+(I-v) 2 .1P", .1W" = 0, .1S" = 0 at p = 1, (14a)

d v
-d .1cp;+ - .1cp,; = 0, .1S" = 0 at P = 13. (14b)

P p

Since the discontinuous terms (p-a)~.1P", (p-et.-.1et.)~.1P"which appeared in the
right-hand side of eqn (8) have been eliminated in eqn (12), the solutions .1cp; and .1S" of
the boundary value problem (12)-(14) will have continuous derivatives up to the second
order.

SOLUTIO]\; FOR THE BOUNDARY VALUE PROBLEM

Equations (12) and (13) represent a set of nonlinear differential equations with
variable coefficients, which can be solved only by numerical methods. In contrast to the
conventional incremental method, which uses linear approximations of eqns (12) and (13),
we solve the nonlinear equations (12)-(13) directly by an iterative method. Moreover, we
shall use cubic B-spline functions as test functions and try to fit the solution by dividing
the whole interval [[3, 1] of pinto N equal parts. Denoting the end points and points of
division with numbers 0, 1,2, ... , N and letting t = (1- 13)/N, the radial coordinate for the
ith point is Pi = 13 + it. Adding two extra points on both sides of the interval at equal
distance t, we assume that the increments .1cp; and .1S" satisfy

N+1 (p-PJ)
.1S" = . L C}1 3 -- ,

I~ -1 t

(15)

(16)
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where {Bj }, {CJ (j = - 1,0, 1, ... , N + 1) are undetermined coefficients and 0 3 (p - pJ/t
represents the cubic B-spline (Ahlberg et al., 1967). After substituting eqns (15) and (16)
into eqns (12)-(14), we obtain 2(N+3) independent nonlinear algebraic equations. Solving
these algebraic equations by iterative techniques we obtain {BJ and {C j }. The increments
11({J:, I1Snand l1({Jn can be readily obtained from eqns (II), (15) and (16), respectively.

NUMERICAL RESULTS AND DISCUSSIONS

We have computed the load-deflection curves, buckling loads, radial membrane forces
and the critical geometrical parameter K e for simply supported shallow spherical shells with
various values of load radius a and hole radius 13. The accuracy of our numerical calculation
is guaranteed by controlling the increments of hole edge deflection 11 Wm (or the increments
ofload I1Pn) such that after five iterations the relative error ofcorresponding load increments
(or corresponding hole edge deflection increments) I] = I«I1PnL - (I1P,,)4)/(I1Pn ) 5 I is kept
within a fixed small interval. Moreover, to avoid the divergence which occurs as soon as
d Wm/dP or dP/d Wmapproaches infinity, the deflection increments and the load increments
have been used alternatively as iterative parameters. Besides, we have chosen a set of values
of allowed interval of 1], the number of dividing points N and the distance l1a(l1o: = I1b/a)
to test the reliability of our numerical calculations. The results indicate that when I] < 10-5

,

N > 100 and I1IX < 0.006, the solutions are virtually independent of these parameters.
Our results can be summarized as follows.

1. Figure 2(a) and (b) shows calculated buckling loads me versus the geometrical
parameter K for simply supported truncated shells with fixed load radius a = 0.5 and 0.7
and with various hole radii 13. These results show that, in general, the buckling load me
decreases due to the presence of the center hole and the effect of the center hole increases
when the hole radius increases. For relatively small center hole radii (in comparison with
the radius of the loaded circle) the effects of the center hole on me decrease rapidly as the
geometrical parameter K increases and become negligible for sufficiently large K. For
example, for IX = 0.7 and 13 ~ 0.4, the effect of the center hole becomes negligible when

J(l2(l'V2))3
m ~ '8 2. M

Eh4
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Fig. 2. Buckling load me versus geometrical parameter K for simply supported spherical shells with
center hole of various radii f3 and fixed load radii 'Yo : (a) 'Yo = 0.5; (b) 'Yo = 0.7. Solid curves are for a

hole reinforced with a rigid ring and dashed curves for a hole with a free edge.
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Fig. 3. Critical geometrical parameter K, versus center hole radius f3 with fixed load radius IX (solid

curves for rigid hole edge, dashed curves for free hole edge).

K> 96, while for IX = 0.5 and f3 ~ 0.2 the effect becomes negligible when K > 100. However,
if the hole edge is reinforced with a rigid ring (note that there are two types of curve in Figs
2-6: solid curves for holes with a rigid ring and dashed curves for holes with a free edge),
not only can the buckling load be raised but so can the critical geometrical parameter K c .

2. In Fig. 3 we have plotted the critical geometrical parameter Kc versus the radius of
the center hole f3 for simply supported shells with a fixed load radius (IX = 0.5 and 0.7). This
figure shows that Kc depends only slightly upon f3 when the hole edge is free. If the hole
edge is reinforced with a rigid ring, Kc will be remarkably increased for shells with large
hole radii.

3. Figure 4 shows the load-hole edge deflection curves for shells with various hole
radii (IX = 0.7, K = 24). From this figure we see that when the hole edge is free, the initial
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Fig. 4. Load-hole edge deflection curves of simply supported spherical shells with various center
hole radii f3 and fixed load radius IX (solid curves for rigid hole edge, dashed curves for free hole

edge).
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Fig. 5. Radial membrane force ]ii, (]ii, = 12(1- v2)a2N,jEh 3
) of a simply supported spherical shell

with various center hole radii f3 under the action of buckling load for rJ. = 0.7. K = 64 (solid curves
for rigid hole edge, dashed curves for free hole edge).

shell stiffness decreases upon increasing the hole radius, whereas when the hole edge is
reinforced with a rigid ring, the initial shell stiffness increases upon increasing the hole
radius. The same conclusion has been obtained for shells with ex = 0.7 and K = 64.

4. In order to see more clearly the effect of a center hole on the buckling behavior of
a simply supported shell, we computed the dimensionless radial membrane forces and the
dimensionless deflection surfaces as functions of radial coordinates under the action of a
buckling load. The results are shown in Fig. 5 (radial membrane force) and Fig. 6 (deflection
surface) forcx = 0.7, K = 64. We also computed the case for ex = 0.7, K = 24, and it is
interesting to note that the radial membrane forces are negative everywhere (i.e. com­
pressive) when K = 24 and become partly positive (i.e. tensional) when K = 64 (Fig. 5).
Furthermore, we found that, in the latter case, the distribution of the radial membrane
forces in the compressive region is almost unaffected by the truncation if the radius of the
center hole does not exceed the radius of the tensile region.

5. Figure 7 shows the radial membrane forces for a simply supported shell with a
center hole reinforced by a rigid ring when rJ. = 0.7, f3 = 0.5 and K = 24. Since in this case
we have K < Kc (cf. Fig. 3), the shell will never buckle. Thus we plotted in Fig. 7 several
curves for different loading conditions to show the changes of radial membrane forces when
the load increases. We see that when the load is small the radial membrane forces are
compressive everywhere and their absolute value increases upon increasing the load. As the
load increases further, the absolute values of the radial membrane forces begin to decrease
until the radial membrane forces become tensional everywhere. From this we may conclude
that it is necessary for the buckling of a shell that the radial membrane force is compressive
and attains a sufficiently large value somewhere in the shell.

6. Table 1 shows the calculated buckling loads when f3 approaches zero and ex
approaches unity. For the simply supported shells with two different boundary conditions
at the hole edge (free or reinforced with a rigid ring) the limiting results obtained are just
the same and coincide well with those obtained by other authors for spherical caps with
K < 22 (Yeh et al., 1980).
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Fig. 6. Deflection curves of a simply supported spherical shell under buckling load with various
center hole radii f3 for fixed fJ. = 0.7. K = 64 (solid curves for rigid hole edge. dashed curves for free

hole edge).

at = 0.7
~ = 0.5
K =24

v =t

L
a10

oll-----tf--...------====';;:+=====--<:"ii'"""r

m = IIlc = 75.77 m = 111.1
/ /-20 ,.-._._._-_._._._.-.-._.

i -.~.~
. /

-10 m =83.9

"m= 574.9

Fig. 7. Radial membrane force IV, of a simply supported spherical shell with a center hole reinforced
with a rigid ring under various moment loads m. Dashed curve represents the IV, under buckling

load m, when the radius of center hole approaches zero.

7. Figure 8 shows the critical geometrical parameter Kc versus the radius of loaded
circle 0( for spherical caps. From this figure we observe that Kc increases monotonously
with the decrement of 0(. For 0( > 0.7 the changes in K c are unremarkable, whereas for
IX < 0.45, Kc increases rapidly as 0( decreases (e.g. when 0( = 0.15, Kc can be as high as 306.9).

CONCLUSIONS

From the present study the following conclusions have been drawn.

(I) The initial stiffness and the buckling load are decreased due to the presence of a
center hole with a free edge, but they can be increased by reinforcing the hole edge with a
rigid ring.
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Table I. Buckling loads me for simply supported shallow thin spherical shell subjected to line moment along the
outside edge

mc(m 12(l-v') /12(1-v 2
) 'Q2

v=Dv M. M =Qo!1b,
Eh 4

Iterative techniques Present results
(Yeh, 1980)

Third Fifth Sixth IX =0.9999 :x =0.998
K approximation approximation approximation !1IX =0.00001 !1:x =0.001

14 19.377 19.3456 19.3442 19.3129 19.368
16 24.346 24.2336 24.2268 24.1911 24.268
18 30.593 30.2694 30.2560 30.1820 30.278
20 38.049 37.2000 37.1730 37.1082 37.214
22 46.608 44.7681 44.7580 44.6976 44.815
24 56.089 52.9066 52.8331 52.7401 52.890
26 66.249 61.5725 61.0213 61.1 025 61.276
28 76.831 70.9605 69.7222 69.7357 69.943

300 3152.72 3161.63
400 4924.09 4938.09

25

20

15

(l = ~a

v =1­
3

11
01'L__....."J�I.::-__::l�-:--_--:~I"...._--

0.3 0.6 0.9
(l

Fig. 8. Critical geometrical parameter K, versus line moment load radius:x for a truncated shell
when the radius of the center hole approaches zero.

(2) It is necessary for the buckling of a shell that the radial membrane force is
compressive and attains a sufficiently large value somewhere in the shell. For caps with
large geometrical parameter K, the radial membrane forces at critical buckling state become
tensional in a central region of the cap. The buckling load will be almost unaffected by the
truncation if the radius of the center hole is less than the radius of the tensile region.

(3) When the load radius a decreases, the critical geometrical parameter Kc of a
spherical cap increases rapidly as soon as a < 0.45 and the instability caused by the line
moment load is no longer of practical interest when the dimensionless load radius IX is less
than 0.3 (cf. Fig. 8).
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